Disclaimer: We may earn a commission if you make any purchase by clicking our links. Please see our detailed guide here.

Follow us on:

Google News
Whatsapp

Engineers, Including Two Indian-Americans, to Create Bulletproof Coatings From Nature

Join the Opinion Leaders Network

Join the Techgenyz Opinion Leaders Network today and become part of a vibrant community of change-makers. Together, we can create a brighter future by shaping opinions, driving conversations, and transforming ideas into reality.

Three engineers, including two of Indian origin, are producing eco-friendly polymers using material from shrimps, mushrooms, and other organisms to produce high-impact multilayered coatings that can protect soldiers on the battlefield, according to a statement.

Two Indian-American engineers and another at the University of Houston are using chitin, a derivative of glucose found in the cellular walls of arthropods and fungi, and 3D printing techniques to produce the coatings, the varsity said in a statement.

The coatings can protect soldiers against bullets, lasers, toxic gas and other dangers

Indian-American Alamgir Karim, Dow Chair Professor of chemical and biomolecular engineering, told PTI “chitin offers promise as a commonly available material that could be processed and used in some products that now require petroleum-based plastics”.

What if we could process these materials and get them to a certain level of performance, so we could do some really good things in the plastics world?” he asked.

“They would be biodegradable by design, so they could decompose and return to Mother Nature.”

Karim, who also serves as director of the International Polymer & Soft Matter Center and of the materials engineering program at the university, is principal investigator on the project, funded by a USD 660,000 grant from the US Department of Defence, the university said.

Another Indian-American Venkatesh Balan, assistant professor of engineering technology, along with Megan Robertson, associate professor of chemical and biomolecular engineering, are co-principal investigators.

They are charged with developing tough, durable, antimicrobial multilayer films capable of resisting an impact from projectiles or lasers while simultaneously absorbing toxic gas.

Karim said the work will also have applications beyond the military, potentially expanding its environmental benefits.

Chitin is the primary component of cell walls in fungi and the exoskeletons of arthropods, including crustaceans, insects and mollusks. It’s also found in fish scales. It can be harvested and processed to produce chitosan, or de-acetylated chitin. It said that this fiber is also produced and sold as a dietary supplement to treat obesity, high cholesterol, high blood pressure, and Crohn’s disease.

Chitosan is easier to handle than the brittle chitin.

Balan, whose lab produces bio-molecules for medical and industrial use, is using chemical and enzymatic processes to produce the chitosan molecules using crustacean shells.

We are trying to do the same thing with mushrooms, he said, noting that mushrooms yield a more consistent degree of polymerisation sustainably, helping to standardise production of chitin and then process it to become chitosan.

A stable source of chitosan polymers will be just the beginning.

Robertson will determine how to alter the atomic composition at the surface of the chitosan in order to improve how it interfaces with the functional layers. Her research includes designing sustainable and biodegradable polymers derived from renewable resources.

That enhanced compatibility between the chitosan and the polymer will improve the coating’s ability to trap gas or absorb the impact from a projectile, she said.

That’s where Karim comes in as engineering a multilayer system that will be comprised of a hardened impact-resistant layer; an energy-absorbing crush layer reminiscent of the way modern cars are designed to crumple on impact, safeguarding the passenger capsule; a layer to absorb toxic gas, with charcoal nanoparticles dispersed in the chitosan; and a textile adhesion layer, which will bind the coating to canvas and other textiles.

That will involve 3D printing different chitin nanoparticles and chitosan-fabricated or reinforced crush-zone design structures and testing them to determine their ability to withstand an impact.

It is a very good, environmentally friendly project, Karim said, and one that will have applications for the automobile, construction, and other industries.

Recomended

Partner With Us

Digital advertising offers a way for your business to reach out and make much-needed connections with your audience in a meaningful way. Advertising on Techgenyz will help you build brand awareness, increase website traffic, generate qualified leads, and grow your business.

Power Your Business

Solutions you need to super charge your business and drive growth

More from this topic